Source code for Potential

import numpy as np
from ctypes import *
from multiprocessing import *
import math
import sklearn.covariance as sk
import sys, os, glob
import platform
from depth.multivariate.import_CDLL import libExact

def MCD_fun(data,alpha,NeedLoc=False):
    cov = sk.MinCovDet(support_fraction=alpha).fit(data)
    if NeedLoc:return([cov.covariance_,cov.location_])
    else:return(cov.covariance_)

## the moment trabnsform requires MCD func
[docs]def potential(x, data, pretransform = "1Mom", kernel="EDKernel" ,mah_parMcd=0.75, kernel_bandwidth=0): if(kernel=="GKernel" or kernel==2): kernel=2 elif(kernel=="EKernel" or kernel==3): kernel=3 elif(kernel=="TriangleKernel" or kernel ==4): kernel=4 else: kernel = 1 if (pretransform == "1Mom" or pretransform == "NMom"): [mu,B_inv,cov]=Maha_moment(data) elif (pretransform == "1MCD" or pretransform == "NMCD"): [mu,B_inv,cov]=Maha_mcd(data, mah_parMcd) data=Maha_transform(data,mu,B_inv) x =Maha_transform(x,mu,B_inv) points_list=data.flatten() objects_list=x.flatten() points=(c_double*len(points_list))(*points_list) objects=(c_double*len(objects_list))(*objects_list) points=pointer(points) points2=pointer(objects) numPoints=pointer(c_int(len(data))) numpoints2=pointer(c_int(len(x))) dimension=pointer(c_int(len(data[0]))) KernelType=pointer(c_int(kernel)) ignoreself=pointer(c_int(0)) classes=pointer((c_int(1))) if kernel_bandwidth==0: kernel_bandwidth=pointer(c_double(math.pow(len(data),-2/(len(data[0])+4)))) else: kernel_bandwidth=pointer(c_double(kernel_bandwidth)) depth=pointer((c_double*len(x))(*np.zeros(len(x)))) libExact.PotentialDepthsCount(points,numPoints,dimension,classes,numPoints,points2,numpoints2,KernelType,kernel_bandwidth,ignoreself,depth) res=np.zeros(len(x)) for i in range(len(x)): res[i]=depth[0][i] return res
def Maha_moment (x): x=np.transpose(x) mu =np.mean(x,axis=1) cov=np.cov(x) w,v=np.linalg.eig(cov) B_inv=np.linalg.inv(np.matmul(v,np.diag(np.sqrt(w)))) return ([mu,B_inv,cov]) def Maha_mcd(x, alpha =0.5): [cov,mu] = MCD_fun(x,alpha,1) w,v=np.linalg.eig(cov) B_inv=np.linalg.inv(np.matmul(v,np.diag(np.sqrt(w)))) return ([mu,B_inv,cov]) def Maha_transform (x, mu, B_inv): return(np.transpose(np.matmul(B_inv,np.transpose(x-mu)))) potential.__doc__=""" Description Calculate the potential of the points w.r.t. a multivariate data set. The potential is the kernel-estimated density multiplied by the prior probability of a class. Different from the data depths, a density estimate measures at a given point how much mass is located around it. Arguments x Matrix of objects (numerical vector as one object) whose depth is to be calculated; each row contains a d-variate point. Should have the same dimension as data. data Matrix of data where each row contains a d-variate point, w.r.t. which the depth is to be calculated. pretransform | The method of data scaling. | ``'1Mom'`` or ``'NMom'`` for scaling using data moments. | ``'1MCD'`` or ``'NMCD'`` for scaling using robust data moments (Minimum Covariance Determinant (MCD). kernel | ``'EDKernel'`` for the kernel of type 1/(1+kernel.bandwidth*EuclidianDistance2(x,y)), | ``'GKernel'`` [default and recommended] for the simple Gaussian kernel, | ``'EKernel'`` exponential kernel: exp(-kernel.bandwidth*EuclidianDistance(x, y)), | ``'VarGKernel'`` variable Gaussian kernel, where kernel.bandwidth is proportional to the depth.zonoid of a point. kernel.bandwidth the single bandwidth parameter of the kernel. If ``0`` - the Scott’s rule of thumb is used. mah.parMcd is the value of the argument alpha for the function covMcd is used when ``pretransform='MCD'``. References * Pokotylo, O. and Mosler, K. (2019). Classification with the pot–pot plot. *Statistical Papers*, 60, 903-931. Examples >>> import numpy as np >>> from depth.multivariate import * >>> mat1=[[1, 0, 0],[0, 2, 0],[0, 0, 1]] >>> mat2=[[1, 0, 0],[0, 1, 0],[0, 0, 1]] >>> x = np.random.multivariate_normal([1,1,1], mat2, 10) >>> data = np.random.multivariate_normal([0,0,0], mat1, 20) >>> potential(x, data) [7.51492797 8.34322926 5.42761506 6.25418171 4.25774485 8.09733146 6.65788017 5.11324521 5.74407939 9.26030661] >>> potential(x, data, kernel_bandwidth=0.1) [13.56510469 13.95553893 11.23251702 12.42491604 10.17527509 13.70947682 12.67352469 11.2080649 11.73402562 14.93067103] >>> potential(x, data, pretransform = "NMCD", mah_parMcd=0.6, kernel_bandwidth=0.1) [11.0603282 11.49509828 8.99303793 8.63168006 7.86456928 11.03588551 10.45468945 8.84989798 9.56799496 12.29832608] """