Source code for Qhpeeling

import numpy as np
from ctypes import *
from multiprocessing import *
import scipy.spatial as scsp
import sys, os, glob
import platform
from depth.multivariate.import_CDLL import libExact

def count_convexes(objects,points,cardinalities, seed = 0):
    tmp_x=points.flatten()
    tmp_x=pointer((c_double*len(tmp_x))(*tmp_x))
    dimension=pointer(c_int(len(points[0])))
    numClasses=pointer(c_int(1))
    tmp_objects=objects.flatten()
    tmp_objects=pointer((c_double*len(tmp_objects))(*tmp_objects))
    PY_numObjects=len(objects)
    numObjects=pointer(c_int(PY_numObjects))
    tmp_cardinalities=pointer(c_int(cardinalities))
    seed=pointer(c_int(seed))
    length=PY_numObjects*1
    init_zeros=np.zeros(length,dtype=int)
    isInConv=pointer((c_int*length)(*init_zeros))
    libExact.IsInConvexes(tmp_x,dimension,tmp_cardinalities,numClasses,tmp_objects,numObjects,seed,isInConv)
    res=np.zeros(length)
    for i in range(length):
        res[i]=isInConv[0][i]
    res.reshape(PY_numObjects,1)
    return res

def is_in_convex(x, data, cardinalities, seed = 0):
    res=count_convexes(x, data, cardinalities, seed)
    return res 

[docs]def qhpeeling(x, data): points_list=data.flatten() objects_list=x.flatten() nrow_data=len(data) depths=np.zeros(len(x)) tmpData=data for i in range(nrow_data): if (len(tmpData)<(len(data[0])*(len(data[0])+1)+0.5)): break tmp=is_in_convex(x,tmpData,len(tmpData)) depths+=tmp tmp_conv=scsp.ConvexHull(tmpData) tmpData=np.delete(tmpData,np.unique(np.array(tmp_conv.simplices)),0) depths=depths/nrow_data return depths
qhpeeling.__doc__= """ Description Calculates the convex hull peeling depth of points w.r.t. a multivariate data set. Usage qhpeeling(x, data) Arguments x Matrix of objects (numerical vector as one object) whose depth is to be calculated; each row contains a d-variate point. Should have the same dimension as data. data Matrix of data where each row contains a d-variate point, w.r.t. which the depth is to be calculated. References * Barnett, V. (1976). The ordering of multivariate data. *Journal of the Royal Statistical Society*, *Series A*, 139, 318–355. * Eddy, W. F. (1981). Graphics for the multivariate two-sample problem: Comment. *Journal of the American Statistical Association*, 76, 287–289. Examples >>> from depth.multivariate import * >>> mat1=[[1, 0, 0, 0, 0],[0, 2, 0, 0, 0],[0, 0, 3, 0, 0],[0, 0, 0, 2, 0],[0, 0, 0, 0, 1]] >>> mat2=[[1, 0, 0, 0, 0],[0, 1, 0, 0, 0],[0, 0, 1, 0, 0],[0, 0, 0, 1, 0],[0, 0, 0, 0, 1]] >>> x = np.random.multivariate_normal([1,1,1,1,1], mat2, 10) >>> data = np.random.multivariate_normal([0,0,0,0,0], mat1, 100) >>> qhpeeling(x, data) [0. 0. 0. 0. 0. 0. 0.01 0. 0. 0.01] """