Convex-hull-peeling depth#
- qhpeeling(x, data)[source]#
- Description
Calculates the convex hull peeling depth of points w.r.t. a multivariate data set.
- Usage
qhpeeling(x, data)
- Arguments
- x
Matrix of objects (numerical vector as one object) whose depth is to be calculated; each row contains a d-variate point. Should have the same dimension as data.
- data
Matrix of data where each row contains a d-variate point, w.r.t. which the depth is to be calculated.
- References
Barnett, V. (1976). The ordering of multivariate data. Journal of the Royal Statistical Society, Series A, 139, 318–355.
Eddy, W. F. (1981). Graphics for the multivariate two-sample problem: Comment. Journal of the American Statistical Association, 76, 287–289.
- Examples
>>> from depth.multivariate import * >>> mat1=[[1, 0, 0, 0, 0],[0, 2, 0, 0, 0],[0, 0, 3, 0, 0],[0, 0, 0, 2, 0],[0, 0, 0, 0, 1]] >>> mat2=[[1, 0, 0, 0, 0],[0, 1, 0, 0, 0],[0, 0, 1, 0, 0],[0, 0, 0, 1, 0],[0, 0, 0, 0, 1]] >>> x = np.random.multivariate_normal([1,1,1,1,1], mat2, 10) >>> data = np.random.multivariate_normal([0,0,0,0,0], mat1, 100) >>> qhpeeling(x, data) [0. 0. 0. 0. 0. 0. 0.01 0. 0. 0.01]