Simplicial volume depth#
- simplicialVolume(x, data, exact=True, k=0.05, mah_estimate='moment', mah_parMCD=0.75, seed=0)[source]#
- Description
Calculates the simpicial volume depth of points w.r.t. a multivariate data set.
- Arguments
- x
Matrix of objects (numerical vector as one object) whose depth is to be calculated; each row contains a d-variate point. Should have the same dimension as data.
- data
Matrix of data where each row contains a d-variate point, w.r.t. which the depth is to be calculated.
- exact
exact=True
(by default) implies the exact algorithm,exact=False
implies the approximative algorithm, considering k simplices.- k
- Number (
k > 1
) or portion (if0 < k < 1
) of simplices that are considered ifexact = F
.Ifk > 1
, then the algorithmic complexity is polynomial in d but is independent of the number of observations in data, given k.If0 < k < 1
, then the algorithmic complexity is exponential in the number of observations in data, but the calculation precision stays approximately the same. - mah_estimate
A character string specifying affine-invariance adjustment; can be
'none'
,'moment'
or'MCD'
, determining whether no affine-invariance adjustemt or moment or Minimum Covariance Determinant (MCD) estimates of the covariance are used. By default'moment'
is used.- mah_parMcd
The value of the argument alpha for the function covMcd is used when,
mah.estimate='MCD'
.- seed
The random seed. The default value
seed=0
makes no changes.
- References
Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics and Probability Letters, 1, 327–332.
- Examples
>>> import numpy as np >>> from depth.multivariate import * >>> mat1=[[1, 0, 0],[0, 2, 0],[0, 0, 1]] >>> mat2=[[1, 0, 0],[0, 1, 0],[0, 0, 1]] >>> x = np.random.multivariate_normal([1,1,1], mat2, 10) >>> data = np.random.multivariate_normal([0,0,0], mat1, 20) >>> simplicalVolume(x, data, exact=True) [0.45749049 0.34956166 0.2263421 0.68742137 0.94796538 0.51112415 0.85250931 0.67914988 0.79165292 0.33192247] >>> simplicalVolume(x, data, exact=False, k=0.2) [0.46826813 0.40138917 0.23189724 0.69025277 0.938543 0.56005713 0.8113647 0.72220103 0.82036139 0.33908597]