Zonoid depth#

zonoid(x, data, seed=0, exact=True, solver='neldermead', NRandom=1000, option=1, n_refinements=10, sphcap_shrink=0.5, alpha_Dirichlet=1.25, cooling_factor=0.95, cap_size=1, start='mean', space='sphere', line_solver='goldensection', bound_gc=True)[source]#
Description

Calculates the zonoid depth of points w.r.t. a multivariate data set.

Arguments
x

Matrix of objects (numerical vector as one object) whose depth is to be calculated; each row contains a d-variate point. Should have the same dimension as data.

data

Matrix of data where each row contains a d-variate point, w.r.t. which the depth is to be calculated.

exact

The type of the used method. The default is exact=True, which leads to exact computation of the zonoid depth using the method described by Dyckerhoff et al. (1996). If exact=False, approximate computation of the zonoid depth is performed using the method defined by the argument solver.

solver

The type of solver used to approximate the depth. {'simplegrid', 'refinedgrid', 'simplerandom', 'refinedrandom', 'coordinatedescent', 'randomsimplices', 'neldermead', 'simulatedannealing'}

NRandom

The total number of iterations to compute the depth. Some solvers are converging faster so they are run several time to achieve NRandom iterations.

option
If option=1, only approximated depths are returned.
If option=2, best directions to approximate depths are also returned.
If option=3, depths calculated at every iteration are also returned.
If option=4, random directions used to project depths are also returned with indices of converging for the solver selected.

n_refinements Set the maximum of iteration for computing the depth of one point. For solver='refinedrandom' or 'refinedgrid'.

sphcap_shrink

It’s the shrinking of the spherical cap. For solver='refinedrandom' or 'refinedgrid'.

alpha_Dirichlet

It’s the parameter of the Dirichlet distribution. For solver='randomsimplices'.

cooling_factor

It’s the cooling factor. For solver='simulatedannealing'.

cap_size

It’s the size of the spherical cap. For solver='simulatedannealing' or 'neldermead'.

start

{‘mean’, ‘random’}. For solver='simulatedannealing' or 'neldermead', it’s the method used to compute the first depth.

space

{'sphere', 'euclidean'}. For solver='coordinatedescent' or 'neldermead', it’s the type of spacecin which the solver is running.

line_solver

{'uniform', 'goldensection'}. For solver='coordinatedescent', it’s the line searh strategy used by this solver.

bound_gc

For solver='neldermead', it’s True if the search is limited to the closed hemisphere.

References
  • Dyckerhoff, R., Koshevoy, G. and Mosler, K. (1996). Zonoid data depth: Theory and computation. In A. Pratt, (Ed.), COMPSTAT 1996, Proceedings in Computational Statistics, Physica-Verlag, Heidelberg, 235–240.

  • Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions. The Annals of Statistics, 25, 1998–2017.

  • Dyckerhoff, R., Mozharovskyi, P., and Nagy, S. (2021). Approximate computation of projection depths. Computational Statistics and Data Analysis, 157, 107166.

Examples
>>> import numpy as np
>>> from depth.multivariate import *
>>> mat1=[[1, 0, 0, 0, 0],[0, 2, 0, 0, 0],[0, 0, 3, 0, 0],[0, 0, 0, 2, 0],[0, 0, 0, 0, 1]]
>>> mat2=[[1, 0, 0, 0, 0],[0, 1, 0, 0, 0],[0, 0, 1, 0, 0],[0, 0, 0, 1, 0],[0, 0, 0, 0, 1]]
>>> x = np.random.multivariate_normal([1,1,1,1,1], mat2, 10)
>>> data = np.random.multivariate_normal([0,0,0,0,0], mat1, 1000)
>>> zonoid(x, data)
[0.         0.00769552 0.03087017 0.         0.30945453 0.0142515
    0.         0.01970896 0.02169483 0.        ]