Source code for Zonoid

import numpy as np
from ctypes import *
from depth.multivariate.Depth_approximation import depth_approximation
import sys, os, glob
import platform
from depth.multivariate.import_CDLL import libExact,libApprox

[docs]def zonoid(x, data, seed=0, exact=True, solver="neldermead", NRandom=1000, option=1, n_refinements=10, sphcap_shrink=0.5, alpha_Dirichlet=1.25, cooling_factor=0.95, cap_size=1, start="mean", space="sphere", line_solver="goldensection", bound_gc=True): if exact: points_list=data.flatten() objects_list=x.flatten() points=(c_double*len(points_list))(*points_list) objects=(c_double*len(objects_list))(*objects_list) points=pointer(points) objects=pointer(objects) numPoints=pointer(c_int(len(data))) numObjects=pointer(c_int(len(x))) dimension=pointer(c_int(len(data[0]))) seed=pointer((c_int(seed))) depths=pointer((c_double*len(x))(*np.zeros(len(x)))) libExact.ZDepth(points,objects, numPoints,numObjects,dimension,seed,depths) res=np.zeros(len(x)) for i in range(len(x)): res[i]=depths[0][i] return res else: return depth_approximation(x, data, "zonoid", solver, NRandom, option, n_refinements, sphcap_shrink, alpha_Dirichlet, cooling_factor, cap_size, start, space, line_solver, bound_gc)
zonoid.__doc__= """ Description Calculates the zonoid depth of points w.r.t. a multivariate data set. Arguments x Matrix of objects (numerical vector as one object) whose depth is to be calculated; each row contains a d-variate point. Should have the same dimension as data. data Matrix of data where each row contains a d-variate point, w.r.t. which the depth is to be calculated. exact The type of the used method. The default is ``exact=True``, which leads to exact computation of the zonoid depth using the method described by Dyckerhoff et al. (1996). If ``exact=False``, approximate computation of the zonoid depth is performed using the method defined by the argument ``solver``. solver The type of solver used to approximate the depth. {``'simplegrid'``, ``'refinedgrid'``, ``'simplerandom'``, ``'refinedrandom'``, ``'coordinatedescent'``, ``'randomsimplices'``, ``'neldermead'``, ``'simulatedannealing'``} NRandom The total number of iterations to compute the depth. Some solvers are converging faster so they are run several time to achieve ``NRandom`` iterations. option | If ``option=1``, only approximated depths are returned. | If ``option=2``, best directions to approximate depths are also returned. | If ``option=3``, depths calculated at every iteration are also returned. | If ``option=4``, random directions used to project depths are also returned with indices of converging for the solver selected. n_refinements Set the maximum of iteration for computing the depth of one point. For ``solver='refinedrandom'`` or ``'refinedgrid'``. sphcap_shrink It's the shrinking of the spherical cap. For ``solver='refinedrandom'`` or ``'refinedgrid'``. alpha_Dirichlet It's the parameter of the Dirichlet distribution. For ``solver='randomsimplices'``. cooling_factor It's the cooling factor. For ``solver='simulatedannealing'``. cap_size It's the size of the spherical cap. For ``solver='simulatedannealing'`` or ``'neldermead'``. start {'mean', 'random'}. For ``solver='simulatedannealing'`` or ``'neldermead'``, it's the method used to compute the first depth. space {``'sphere'``, ``'euclidean'``}. For ``solver='coordinatedescent'`` or ``'neldermead'``, it's the type of spacecin which the solver is running. line_solver {``'uniform'``, ``'goldensection'``}. For ``solver='coordinatedescent'``, it's the line searh strategy used by this solver. bound_gc For ``solver='neldermead'``, it's ``True`` if the search is limited to the closed hemisphere. References * Dyckerhoff, R., Koshevoy, G. and Mosler, K. (1996). Zonoid data depth: Theory and computation. In A. Pratt, (Ed.), COMPSTAT 1996, *Proceedings in Computational Statistics*, Physica-Verlag, Heidelberg, 235–240. * Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions. *The Annals of Statistics*, 25, 1998–2017. * Dyckerhoff, R., Mozharovskyi, P., and Nagy, S. (2021). Approximate computation of projection depths. *Computational Statistics and Data Analysis*, 157, 107166. Examples >>> import numpy as np >>> from depth.multivariate import * >>> mat1=[[1, 0, 0, 0, 0],[0, 2, 0, 0, 0],[0, 0, 3, 0, 0],[0, 0, 0, 2, 0],[0, 0, 0, 0, 1]] >>> mat2=[[1, 0, 0, 0, 0],[0, 1, 0, 0, 0],[0, 0, 1, 0, 0],[0, 0, 0, 1, 0],[0, 0, 0, 0, 1]] >>> x = np.random.multivariate_normal([1,1,1,1,1], mat2, 10) >>> data = np.random.multivariate_normal([0,0,0,0,0], mat1, 1000) >>> zonoid(x, data) [0. 0.00769552 0.03087017 0. 0.30945453 0.0142515 0. 0.01970896 0.02169483 0. ] """