Spatial depth#
- spatial(x, data, mah_estimate='moment', mah_parMcd=0.75)[source]#
- Description
Calculates the spatial depth of points w.r.t. a multivariate data set.
- Arguments
- x
Matrix of objects (numerical array) whose depth is to be calculated; each row contains a d-variate point. Should have the same dimension as data.
- data
Matrix of data where each row contains a d-variate point, w.r.t. which the depth is to be calculated.
- mah_estimate
String character specifying which estimates to use when calculating sample covariance matrix. It can be
'none'
,'moment'
or'MCD'
, determining whether traditional moment or Minimum Covariance Determinant (MCD) estimates for mean and covariance are used. By default'moment'
is used. With'none'
the non-affine invariant version of spatial depth is calculated.- mah_parMcd
Argument alpha for the function covMcd is used when
mah.estimate='MCD'
.
- References
Serfling, R. (2002). A depth function and a scale curve based on spatial quantiles. In Dodge, Y. (Ed.), Statistical Data Analysis Based on the L1-Norm and Related Methods, Statisctics in Industry and Technology, Birkhäuser, Basel, 25–38.
- Examples
>>> import numpy as np >>> from depth.multivariate import * >>> mat1=[[1, 0, 0, 0, 0],[0, 2, 0, 0, 0],[0, 0, 3, 0, 0],[0, 0, 0, 2, 0],[0, 0, 0, 0, 1]] >>> mat2=[[1, 0, 0, 0, 0],[0, 1, 0, 0, 0],[0, 0, 1, 0, 0],[0, 0, 0, 1, 0],[0, 0, 0, 0, 1]] >>> x = np.random.multivariate_normal([1,1,1,1,1], mat2, 10) >>> data = np.random.multivariate_normal([0,0,0,0,0], mat1, 1000) >>> spatial(x, data) [0.22548919451212823, 0.14038895785356165, 0.2745517635029123, 0.35450156620496354, 0.42373722245348566, 0.34562025044812095, 0.3585616673301636, 0.16916309940691643, 0.573349631625784, 0.32017213635679687]